Test Report

Efficiency of inactivation of airborne influenza virus in a closed space with an air purification device set in a room air conditioner

Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization
No.28-002

Aug. 22. 2016

VCN16A517
1. The aim of work
 To confirm that the air purification device can decrease activity of airborne influenza virus.

2. Client
 Mitsubishi Electric Corporation Living Environment System Laboratory
 5-1-1 Ofuna, Kamakura, Kanagawa

3. Influenza virus strain used in this study
 Influenza virus A/Aichi/2/68(H3N2)

4. Materials & methods
 1) Virus
 Influenza virus, propagated in embryonated chicken eggs, was used for this study.

 2) Device
 The air purification device in Mitsubishi Electric Room air conditioners KIRIGAMINE
 MSZ-LN SERIES (Indoor unit only)

 3) Conditions
 Air flow rate 12.4 m3/min
 ① Control (Natural time course)
 ② Room air conditioner on (device on)

 4) Test room and equipments
 Test room volume: 25m3
 Temperature & Humidity: 20-23℃, 26-32%
 Equipment used: Medical nebulizer (OMRON, NE-C28)
 Fan (YAMAZEN, YAR-VJ19)
 Virus sampling system

5) The procedure for the experiments
 Synopsis of procedure for the experiment is shown in Table.1. Fig.1 shows schematic diagram of
 the test room and the settings of the apparatus there.
 ① Atomize 9mL of viral liquid by three set medical nebulizers, for 10 minutes in the
 room.(3mL per one medical nebulizer)
 ② Collect airborne influenza virus to gelatin filter membrane by the virus sampling system:
 sampling of 80L-air (40L/min × 2min).
 ③ Start to operate the air conditioner, attached on the wall in the test room.
 ④ Collect airborne influenza virus repeatedly at regular intervals.

6) Quantitation of the active virus
 The viability of collected influenza virus was titrated by plaque assay using MDCK
 (Madin-Darby canine kidney) cells.
Table 1. The procedure for the experiment.

<table>
<thead>
<tr>
<th>Devices used</th>
<th>Time after the air purification device started on (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulation in the air</td>
<td>0</td>
</tr>
<tr>
<td>Atomization of influenza virus</td>
<td>Fan</td>
</tr>
<tr>
<td>Operation of room air conditioner</td>
<td>room air conditioner</td>
</tr>
<tr>
<td>Collection of influenza virus</td>
<td>Gelatin filter membrane</td>
</tr>
</tbody>
</table>

Fig.1. Schematic diagram of the test room and settings of the apparatus.
5. Results

Fig. 2 shows the time course of inactivation of the airborne influenza virus.

![Graph showing time course of inactivation of airborne influenza virus](image)

Fig. 2. Time courses of inactivation of airborne influenza virus in the test room.

Approximations from graphs in Fig. 2.

1. Control (Natural time course)
 \[y = -0.0089x + 3.9349 \quad (R^2 = 0.9744) \]

2. Room air conditioner on (device on)
 \[y = -0.0369x + 4.5664 \quad (R^2 = 0.9902) \]

The decreasing rate of the active virus in the chamber air while the device was “on” was significantly greater than control: the decreasing rate was 99% after 72 minutes. These findings indicate that the air purification device has function to inactivate the airborne influenza virus.